Abstract

A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the gaseous transient species benzoyl radical, C(6)H(5)CO. C(6)H(5)CO was produced either from photolysis of acetophenone, C(6)H(5)C(O)CH(3), at 248 nm or in reactions of phenyl radical (C(6)H(5)) with CO; C(6)H(5) was produced on photolysis of C(6)H(5)Br at 248 nm. One intense band at 1838 ± 1 cm(-1), one weak band at 1131 ± 3 cm(-1), and two extremely weak bands at 1438 ± 5 and 1590 ± 10 cm(-1) are assigned to the C═O stretching (ν(6)), the C-C stretching mixed with C-H deformation (ν(15)), the out-of-phase C(1)C(2)C(3)/C(5)C(6)C(1) symmetric stretching (ν(10)), and the in-phase C(1)C(2)C(3)/C(4)C(5)C(6) antisymmetric stretching (ν(7)) modes of C(6)H(5)CO, respectively. These observed vibrational wavenumbers and relative IR intensities agree with those reported for C(6)H(5)CO isolated in solid Ar and with values predicted for C(6)H(5)CO with the B3LYP/aug-cc-pVDZ method. The rotational contours of the two bands near 1838 and 1131 cm(-1) simulated according to rotational parameters predicted with the B3LYP/aug-cc-pVDZ method fit satisfactorily with the experimental results. Additional products BrCO, C(6)H(5)C(O)Br, and C(6)H(5)C(O)C(6)H(5) were identified in the C(6)H(5)Br/CO/N(2) experiments; the kinetics involving C(6)H(5)CO and C(6)H(5)C(O)Br are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.