Abstract
Informing Additive Manufacturing (AM) technology adoption decisions, this paper investigates the relationship between build volume capacity utilisation and efficient technology operation in an inter-process comparison of the costs of manufacturing a complex component used in the packaging industry. Confronting the reported costs of a conventional machining and welding pathway with an estimator of the costs incurred through an AM route utilising Direct Metal Laser Sintering (DMLS), we weave together four aspects: optimised capacity utilisation, ancillary process steps, the effect of build failure and design adaptation. Recognising that AM users can fill unused machine capacity with other, potentially unrelated, geometries, we posit a characteristic of ‘fungible’ build capacity. This aspect is integrated in the cost estimation framework through computational build volume packing, drawing on a basket of sample geometries. We show that the unit cost in mixed builds at full capacity is lower than in builds limited to a single type of geometry; in our study, this results in a mean unit cost overstatement of 157%. The estimated manufacturing cost savings from AM adoption range from 36 to 46%. Additionally, we indicate that operating cost savings resulting from design adaptation are likely to far outweigh the manufacturing cost advantage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.