Abstract

Determining the accurate locations of interictal spikes has been fundamental in the presurgical evaluation of epilepsy surgery. Stereo-electroencephalography (SEEG) is able to directly record cortical activity and localize interictal spikes. However, the main caveat of SEEG techniques is that they have limited spatial sampling (covering <5% of the whole brain), which may lead to missed spikes originating from brain regions that were not covered by SEEG. To address this problem, we propose a SEEG-informed minimum-norm estimates (SIMNE) method by combining SEEG with magnetoencephalography (MEG) or EEG. Specifically, the spike locations determined by SEEG offer as a priori information to guide MEG source reconstruction. Both computer simulations and experiments using data from five epilepsy patients were conducted to evaluate the performance of SIMNE. Our results demonstrate that SIMNE generates more accurate source estimation than a traditional minimum-norm estimates method and reveals the locations of spikes missed by SEEG, which would improve presurgical evaluation of the epileptogenic zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call