Abstract

Vehicular Ad Hoc Network (VANET) makes real-time traffic information accessible to vehicles en routes, thus possesses a great potential to improve traffic safety and mobility in the near future. Existing literature shows that we are still lack of approaches to track information spreading dynamics via VANET, which will prevent the potential applications from success. Motivated by this view, this research develops an information-traffic coupled cell transmission model (IT-CTM) to capture information spreading dynamics via VANET. More exactly, this study considers information spreading over a road segment forms a wave with a front and tail, each of which goes through the road segment following an intermittent transmission pattern due to traffic flow dynamics. The approach of IT-CTM discretizes a road segment into a number of cells. Each cell covers several intermittent transmissions. Mathematical methods are developed to capture the inner-cell and inter-cell movements of information front and tail, which enable us to track the information spreading dynamics along cells. Numerical experiments based on simulation and field data indicate that the IT-CTM can closely track the dynamic movements of information front and tail as well as the dynamic information coverage as a single or multiple piece(s) of information propagating via VANET on a one-way or two-way road segment. The mean absolute error (MAE) for tracking dynamic information coverage is <5% across all experiments in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call