Abstract
Exposing a secret-key is one of the most disastrous threats in cryptographic protocols. The key-insulated security is proposed with the aim of realizing the protection against such key-exposure problems. In this paper, we study key-insulated authentication schemes with information-theoretic security. More specifically, we focus on one of information-theoretically secure authentication, called multireceiver authentication codes, and we newly define a model and security notions of information-theoretically secure key-insulated multireceiver authentication codes (KI-MRA for short) based on the ideas of both computationally secure key-insulated signature schemes and multireceiver authentication-codes with information-theoretic setting. In addition, we show lower bounds of sizes of entities' secret-keys. We also provide two kinds of constructions of KI-MRA: direct and generic constructions which are provably secure in our security definitions. It is shown that the direct construction meets the lower bounds of key-sizes with equality. Therefore, it turns out that our lower bounds are tight, and that the direct construction is optimal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.