Abstract

In energy harvesting communication systems, an exogenous recharge process supplies energy for the data transmission and arriving energy can be buffered in a battery before consumption. Transmission is interrupted if there is not sufficient energy. We address communication with such random energy arrivals in an information-theoretic setting. Based on the classical additive white Gaussian noise (AWGN) channel model, we study the coding problem with random energy arrivals at the transmitter. We show that the capacity of the AWGN channel with stochastic energy arrivals is equal to the capacity with an average power constraint equal to the average recharge rate. We provide two different capacity achieving schemes: save-and-transmit and best-effort-transmit. Next, we consider the case where energy arrivals have time-varying average in a larger time scale. We derive the optimal offline power allocation for maximum average throughput and provide an algorithm that finds the optimal power allocation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.