Abstract

Random processes that generate information slower than linearly with time are termed information-singular. The study of information-singularity contributes to a more thorough understanding of the mathematical nature of information generation. Specifically, it elucidates the manner in which generation of information by a time series is critically dependent on the detailed behavior of the sample functions of its spectral representation. The main theorem states that any random sequence whose spectral representation has stationary independent increments with no Brownian motion component is information-singular in the mean-squared sense. The concept of information-singularity can be construed as a means for discriminating between deterministic and nondeterministic processes. It is felt that information-singularity fulfills this discriminating function in a physically more satisfying manner than does the classical Hilbert space theory of linear and nonlinear prediction. The desire for a still more satisfying discriminant motivates investigation of the class of random processes that retain their information-singularity even when corrupted by additive noise. In the case of strictly stationary processes, the discussion focuses on the relationship between information-singularity and zero entropy. Lastly, some alternative definitions of information-singularity are considered and several open problems are identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.