Abstract

To study concepts that are coded in language, researchers often collect lists of conceptual properties produced by human subjects. From these data, different measures can be computed. In particular, inter-concept similarity is an important variable used in experimental studies. Among possible similarity measures, the cosine of conceptual property frequency vectors seems to be a de facto standard. However, there is a lack of comparative studies that test the merit of different similarity measures when computed from property frequency data. The current work compares four different similarity measures (cosine, correlation, Euclidean and Chebyshev) and five different types of data structures. To that end, we compared the informational content (i.e., entropy) delivered by each of those 4 × 5 = 20 combinations, and used a clustering procedure as a concrete example of how informational content affects statistical analyses. Our results lead us to conclude that similarity measures computed from lower-dimensional data fare better than those calculated from higher-dimensional data, and suggest that researchers should be more aware of data sparseness and dimensionality, and their consequences for statistical analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.