Abstract

In the context of quantum information, we investigate extensively some important classes of a general form of a two-qubit system under Lorentz transformation. It is shown Lorentz transformation causes a decay of entanglement and consequently information loses. On the other hand, it generates entangled states between systems prepared initially in a separable states. The partial entangled states are more robust under Lorentz transformation than maximally entangled states. Therefore the rate of information lose is larger for maximum entangled states compared with that for partially entangled states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.