Abstract
In this paper, we study information transport in multiplex networks comprised of two coupled subnetworks. The upper subnetwork, called the logical layer, employs the shortest paths protocol to determine the logical paths for packets transmission, while the lower subnetwork acts as the physical layer, in which packets are delivered by the biased random walk mechanism characterized with a parameter α. Through simulation, we obtain the optimal α corresponding to the maximum network lifetime and the maximum number of the arrival packets. Assortative coupling is better than random coupling and disassortative coupling, since it achieves better transmission performance. Generally, the more homogeneous the lower subnetwork is, the better the transmission performance, which is the opposite for the upper subnetwork. Finally, we propose an attack centrality for nodes based on the topological information of both subnetworks, and investigate the transmission performance under targeted attacks. Our work aids in understanding the spread and robustness issues of multiplex networks and provides some clues about the design of more efficient and robust routing architectures in communication systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.