Abstract

Neurons process information by translating continuous signals into patterns of discrete spike times. An open question is how much information these spike times contain about signals which modulate either the mean or the variance of the somatic currents in neurons, as is observed experimentally. Here we calculate the exact information contained in discrete spike times about a continuous signal in both encoding strategies. We show that the information content about mean modulating signals is generally substantially larger than about variance modulating signals for biological parameters. Our analysis further reveals that higher information transmission is associated with a larger proportion of nonlinear signal encoding. Our study measures the complete information content of mean and variance coding and provides a method to determine what fraction of the total information is linearly decodable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.