Abstract

This article presents an analysis of the information transmission of periodic sub-threshold spike trains in a hippocampal CA1 neuron model in the presence of a homogeneous Poisson shot noise. In the computer simulation, periodic sub-threshold spike trains were presented repeatedly to the midpoint of the main apical branch, while the homogeneous Poisson shot noise was applied to the mid-point of a basal dendrite in the CA1 neuron model consisting of the soma with one sodium, one calcium, and five potassium channels. From spike firing times recorded at the soma, the inter spike intervals were generated and then the probability, p(T), of the inter-spike interval histogram corresponding to the spike interval, r, of the periodic input spike trains was estimated to obtain an index of information transmission. In the present article, it is shown that at a specific amplitude of the homogeneous Poisson shot noise, p(T) was found to be maximized, as well as the possibility to encode the periodic sub-threshold spike trains became greater. It was implied that setting the amplitude of the homogeneous Poisson shot noise to the specific values which maximize the information transmission might contribute to efficiently encoding the periodic sub-threshold spike trains by utilizing the stochastic resonance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.