Abstract
Profiled side-channel analysis (SCA) leverages leakage from cryptographic implementations to extract the secret key. When combined with advanced methods in neural networks (NNs), profiled SCA can successfully attack even those cryptocores assumed to be protected against SCA. Despite the rise in the number of studies devoted to NN-based SCA, a range of questions has remained unanswered, namely: how to choose an NN with an adequate configuration, how to tune the NN’s hyperparameters, when to stop the training, etc. Our proposed approach, “InfoNEAT,” tackles these issues in a natural way. InfoNEAT relies on the concept of neural structure search, enhanced by information-theoretic metrics to guide the evolution, halt it with novel stopping criteria, and improve time-complexity and memory footprint. The performance of InfoNEAT is evaluated by applying it to publicly available datasets composed of real side-channel measurements. In addition to the considerable advantages regarding the automated configuration of NNs, InfoNEAT demonstrates significant improvements over other approaches for effective key recovery in terms of the number of epochs (e.g.,x6 faster) and the number of attack traces compared to both MLPs and CNNs (e.g., up to 1000s fewer traces to break a device) as well as a reduction in the number of trainable parameters compared to MLPs (e.g., by the factor of up to 32). Furthermore, through experiments, it is demonstrated that InfoNEAT’s models are robust against noise and desynchronization in traces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IACR Transactions on Cryptographic Hardware and Embedded Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.