Abstract
Oblivious polynomial evaluation (OPE) consists of a two-party protocol where a sender inputs a polynomial $$p(x)$$ and a receiver inputs a single value $$x_{0}$$ . At the end of the protocol, the sender learns nothing and the receiver learns $$p(x_{0})$$ . This paper deals with the problem of oblivious polynomial evaluation under an information-theoretic perspective, which is based on the definitions of unconditional security developed by Crépeau et al. (Information-theoretic conditions for two-party secure function evaluation. EUROCRYPT 2006, LNCS 4004. Springer, Berlin, Heidelberg, pp 538–554, 2006). In this paper, we propose an information-theoretic model for oblivious polynomial evaluation relying on pre-distributed data and prove very general lower bounds on the size of the pre-distributed data, as well as the size of the communications in any protocol. It is demonstrated that these bounds are tight by obtaining a round-optimal OPE protocol, which meets the lower bounds simultaneously. We present a natural generalization to OPE called oblivious linear functional evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.