Abstract

Reasoning-based functional-fault diagnosis has recently been advocated to achieve high diagnosis accuracy, low defect escapes, and reducing manufacturing cost. However, such diagnosis method requires a rich set of test items (syndromes) and a sizable database of faulty boards to learn from. An insufficient number of failed boards, ambiguous root-cause identification, and redundant or irrelevant syndromes can render reasoning-based diagnosis ineffective. Periodic evaluation and analysis can help locate weaknesses in a diagnosis system and thereby provide guidelines for redesigning the tests, which facilitates better diagnosis. We propose an information-theoretic framework for evaluating the effectiveness of and providing guidance to a reasoning-based functional-fault diagnosis system. Syndrome analysis based on feature selection methods provides a representative set of syndromes and suggests irrelevant syndromes in diagnosis. Root-cause analysis measures the discriminative ability of differentiating a given root cause from others. Results are presented for four types of diagnosis systems for three complex boards that are in volume production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call