Abstract
In the robust secure aggregation problem, a server wishes to learn and only learn the sum of the inputs of a number of users while some users may drop out (i.e., may not respond). The identity of the dropped users is not known a priori and the server needs to securely recover the sum of the remaining surviving users. We consider the following minimal two-round model of secure aggregation. Over the first round, any set of no fewer than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$U$ </tex-math></inline-formula> users out of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> users respond to the server and the server wants to learn the sum of the inputs of all responding users. The remaining users are viewed as dropped. Over the second round, any set of no fewer than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$U$ </tex-math></inline-formula> users of the surviving users respond (i.e., dropouts are still possible over the second round) and from the information obtained from the surviving users over the two rounds, the server can decode the desired sum. The security constraint is that even if the server colludes with any <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T$ </tex-math></inline-formula> users and the messages from the dropped users are received by the server (e.g., delayed packets), the server is not able to infer any additional information beyond the sum in the information theoretic sense. For this information theoretic secure aggregation problem, we characterize the optimal communication cost. When <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$U \leq T$ </tex-math></inline-formula> , secure aggregation is not feasible, and when <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$U > T$ </tex-math></inline-formula> , to securely compute one symbol of the sum, the minimum number of symbols sent from each user to the server is 1 over the first round, and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1/(U-T)$ </tex-math></inline-formula> over the second round.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.