Abstract

What makes a piece of music appear complex to a listener? This research extends previous work by Eerola (2016), examining information content generated by a computational model of auditory expectation (IDyOM) based on statistical learning and probabilistic prediction as an empirical definition of perceived musical complexity. We systematically manipulated the melody, rhythm, and harmony of short polyphonic musical excerpts using the model to ensure that these manipulations systematically varied information content in the intended direction. Complexity ratings collected from 28 participants were found to positively correlate most strongly with melodic and harmonic information content, which corresponded to descriptive musical features such as the proportion of out-of-key notes and tonal ambiguity. When individual differences were considered, these explained more variance than the manipulated predictors. Musical background was not a significant predictor of complexity ratings. The results support information content, as implemented by IDyOM, as an information-theoretic measure of complexity as well as extending IDyOM's range of applications to perceived complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.