Abstract
We review the principal information theoretic tools and their use for feature selection, with the main emphasis on classification problems with discrete features. Since it is known that empirical versions of conditional mutual information perform poorly for high-dimensional problems, we focus on various ways of constructing its counterparts and the properties and limitations of such methods. We present a unified way of constructing such measures based on truncation, or truncation and weighing, for the Möbius expansion of conditional mutual information. We also discuss the main approaches to feature selection which apply the introduced measures of conditional dependence, together with the ways of assessing the quality of the obtained vector of predictors. This involves discussion of recent results on asymptotic distributions of empirical counterparts of criteria, as well as advances in resampling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.