Abstract
Physical systems are often simulated using a stochastic computation where different final states result from identical initial states. Here, we derive the minimum energy cost of simulating a data sequence of a general physical system by stochastic computation. We show that the cost is proportional to the difference between two information-theoretic measures of complexity of the data—the statistical complexity and the predictive information . We derive the difference as the amount of information erased during the computation. Finally, we illustrate the physics of information by implementing the stochastic computation as a Gedanken experiment with a Szilard-type engine. The results create a new link between thermodynamics, information theory and complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.