Abstract

Since most of the biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and phonocardiogram (PCG), are nonstationary random processes, the time-frequency analysis has recently been extensively applied to those signals in order to achieve precise characterization and classification. In this paper, we have first defined a new class of information theoretic equivalent bandwidths (EBWs) of stationary random processes, then instantaneous EBWs (IEBWs) using nonnegative time-frequency distributions have been defined in order to track the change of the EBW of a nonstationary random process. The new class of EBWs which includes spectral flatness measure (SFM) for stationary random processes is defined by using generalized Burg entropy. Generalized Burg entropy is derived from the relation between Rényi entropy and Rényi information divergence of order alpha. In order to track the change of EBWs of a nonstationary random process, the IEBWs are defined on the nonnegative time-frequency distributions, which are constructed by the Copula theory. We evaluate the IEBWs for a first order stationary auto-regressive (AR) process and three types of time-varying AR processes. The results show that the IEBWs proposed here properly represent a signal bandwidth. In practical application to PCGs, the proposed method was successful in extracting the information that the bandwidth of the innocent systolic murmur was much smaller than that of the abnormal systolic murmur. We have defined new information theoretic EBWs and have proposed a novel method to track the change of the IEBWs. Some computer simulation showed effectiveness of the methods. Applying the IEBWs to PCGs, we could extract some features of a systolic murmur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call