Abstract

Cross-domain data reconstruction methods derive a shared transformation across source and target domains. These methods usually make a specific assumption on noise, which exhibits limited ability when the target data are contaminated by different kinds of complex noise in practice. To enhance the robustness of domain adaptation under severe noise conditions, this paper proposes a novel reconstruction based algorithm in an information-theoretic setting. Specifically, benefiting from the theoretical property of correntropy, the proposed algorithm is distinguished with: detecting the contaminated target samples without making any specific assumption on noise; greatly suppressing the negative influence of noise on cross-domain transformation. Moreover, a relative entropy based regularization of the transformation is incorporated to avoid trivial solutions with the reaped theoretic advantages, i.e., non-negativity and scale-invariance. For optimization, a half-quadratic technique is developed to minimize the non-convex information-theoretic objectives with explicitly guaranteed convergence. Experiments on two real-world domain adaptation tasks demonstrate the superiority of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.