Abstract

We describe a specific bandpass sampling procedure that provides high efficiency for interferogram sampling. This new approach is able to mitigate the important radiometric and noise disadvantages of Fourier transform spectrometry that recent theoretical investigations have pointed out. Proof of concept is given using simulations and measurements performed with a Sagnac triangular interferometer. Adopting an information-theoretic approach to spectrometry, we demonstrate the existence of important limitations to the radiometric efficiency achieved by any interferential or dispersive multiplex spectrometers. We find an extension to optics of the well-known data processing inequality, confirming that the Fellgett (multiplex) advantage is an inappropriate expectation. We give evidence of radiometric disadvantages implicit in the coded aperture architecture typical of compressive sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.