Abstract
Context. The problem of diagnosis models synthesis in the big data processing based on parallel computing is solved. The object of the research is the process of diagnosis models synthesis. The subject of the research are the methods and information technologies for diagnosis models synthesis. Objective. The research objective is to develop diagnosis models synthesis information technology. Method. The paper deals with information technology of diagnosis models synthesis which is a set of diagrams graphically describing structural elements of the system as well as the behavioral aspects of their interaction at various stages of diagnostics objects models construction. The developed information technology enables to perform the construction of distributed diagnostics systems where computationally complex stages of diagnosis models synthesis are performed on high-performance server equipment, which makes it possible to significantly increase the practical threshold for using diagnostics systems in the processing of big data sets for solving of the tasks of training sample data reduction, rules extraction, diagnosis models construction and retraining. Results. The software which implements the proposed information technology and allows to synthesize diagnosis models based on the given data samples has been developed. Conclusions. The conducted experiments have confirmed the proposed information technology operability and allow to recommend it for solving the problems of big data processing for technical and biomedical diagnostics in practice. The prospects for further researches may include the modification of the developed information technology by introducing of other methods of diagnosis models synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.