Abstract

The wild success of a few online communities (such as Wikipedia) has obscured the fact that most attempts at forming such communities fail. This study evaluates information seeding, an early-stage intervention to bootstrap online communities that enables contributors to build on externally sourced information rather than have them start from scratch. I analyze the effects of information seeding on follow-on contributions using data on more than 350 million contributions made by more than 577,000 contributors to OpenStreetMap, a crowd-sourced map-making community seeded with data from the U.S. Census. I estimate the effect of seeding using a natural experiment in which an oversight caused about 60% of U.S. counties to be seeded with a complete census map, while the rest were seeded with less complete versions. Although access to basic knowledge generally encourages downstream knowledge production, I find that a higher level of information seeding significantly lowered follow-on contributions and contributor activity on OpenStreetMap, and was associated with lower levels of long-term quality. However, seeding did benefit densely populated urban areas and did not discourage more committed users. To explain these patterns, I argue that information seeding can crowd out contributors’ ability to develop ownership over baseline knowledge and thereby disincentivize follow-on contributions. This paper was accepted by Chris Forman, information systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.