Abstract

This work aims to solve the specific problem in the Power Internet of Things (PIoT). PIoT is vulnerable to monitoring, tampering, forgery, and other attacks during frequent data interaction under the background of big data, leading to a severe threat to the power grid’s Information Security (ISEC). Cryptosystems can solve ISEC problems, such as confidentiality, data integrity, authentication, identity recognition, data control, and nonrepudiation. Thereupon, this work expounds on cryptography from public-key encryption and digital signature and puts forward the model of network information attack. Then, the security of the two cryptograms is certified against the two cyberattack modes. On this basis, an Identity-based Combined Encryption and Signature (IBCES) ensemble scheme is proposed by combining public-key encryption with the digital signature. Finally, the security of the proposed IBCES’s encryption and the signature schemes is verified, and the results prove their feasibility. The results show that the proposed IBCEs are effective and feasible, fully meeting the information confidentiality requirements. Additionally, smart grid against Information Security (ISEC) algorithms must comprehensively consider network resources and computing power. This work creatively combines the two cryptosystems. The proposal breaks the traditional key segmentation principle by applying the same key to different cryptosystems and ensures the independent security of the two cryptosystems. The conclusion provides technical support for future research on cryptography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call