Abstract
Although in the last decade several fact-checking organizations have emerged to verify misinformation, fake news has continued to proliferate, especially through social media platforms. Even though adopting improved detection strategies is of utmost importance, the fact-checking process could be optimized by verifying whether a claim has been previously fact-checked. Despite some ad-hoc information retrieval approaches having been recently proposed, the utility of modern (neural) retrieval systems have not been investigated yet. In this paper, we consider the standard two-phases retriever-reranker architecture and benchmark different state-of-the-art techniques from the information retrieval and Q&A literature. We design several experiments on a real-world Twitter dataset to analyze the efficiency and the effectiveness of the benchmark approaches. Our results show that combining standard and neural approaches is the most promising research direction to improve retrievers performance and that complex (neural) rerankers might still be efficient in practice since there is no need to process a high number of documents to improve ranking performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.