Abstract
It is a well-studied phenomenon in AdS3/CFT2 that pure states often appear ‘too thermal’ in the classical gravity limit, leading to a version of the information puzzle. One example is the case of a heavy scalar primary state, whose associated classical geometry is the BTZ black hole. Another example is provided by a heavy left-moving primary, which displays late time decay in chiral correlators.In this paper we study a special class of pure state geometries which do not display such information loss. They describe heavy CFT states created by a collection of chiral operators at various positions on the complex plane. In the bulk, these take the form of multi-centered solutions from the backreaction of a collection of spinning particles, which we construct for circular distributions of particles. We compute the two-point function of probe operators in these backgrounds and show that information is retrieved.We observe that the states for which our geometric picture is reliable are highly extended star-like objects in the bulk description. This may point to limitations of semiclassical microstate geometries for understanding the information puzzle and to the need for including quantum effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.