Abstract

Living organisms use interconnected chemical reaction networks (CRNs) to exchange information with the surrounding environment and respond to diverse external stimuli. Inspired by nature, numerous artificial CRNs with a complex information processing function have been recently introduced, with DNA as one of the most attractive engineering materials. Although much progress has been made in DNA-based CRNs in terms of controllable reaction dynamics and molecular computation, the effective integration of signal translation with information processing in a single CRN remains to be difficult. In this work, we introduced a stimuli-responsive DNA reaction network capable of integrated information translation and processing in a stepwise manner. This network is designed to integrate sensing, translation, and decision-making operations by independent modules, in which various logic units capable of performing different functions were realized, including information identification (YES and OR gates), integration (AND and AND-AND gates), integration-filtration (AND-AND-NOT gate), comparison (Comparator), and map-to-map analysis (Feynman gate). Benefitting from the modular and programmable design, continuous and parallel processing operations are also possible. With the innovative functions, we show that the DNA network is a highly useful addition to the current DNA-based CRNs by offering a bottom-up strategy to design devices capable of cascaded information processing with high efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.