Abstract

In contrast to the visual system, the auditory system has longer subcortical pathways and more spiking synapses between the peripheral receptors and the cortex. This unique organization reflects the needs of the auditory system to extract behaviorally relevant information from a complex acoustic environment using strategies different from those used by other sensory systems. The neural representations of acoustic information in auditory cortex include two types of important transformations: the non-isomorphic transformation of acoustic features and the transformation from acoustical to perceptual dimensions. Neural representations in auditory cortex are also modulated by auditory feedback and vocal control signals during speaking or vocalization. The challenges facing auditory neuroscientists and biomedical engineers are to understand neural coding mechanisms in the brain underlying such transformations. I will use recent findings from my laboratory to illustrate how acoustic information is processed in the primate auditory cortex and discuss its implications for neural processing of speech and music in the brain as well as for the design of neural prosthetic devices such as cochlear implants. We have used a combination of neurophysiological techniques and quantitative engineering tools to investigate these problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call