Abstract
We investigate information processing in randomly connected recurrent neural networks. It has been shown previously that the computational capabilities of these networks are maximized when the recurrent layer is close to the border between a stable and an unstable dynamics regime, the so called edge of chaos. The reasons, however, for this maximized performance are not completely understood. We adopt an information-theoretical framework and are for the first time able to quantify the computational capabilities between elements of these networks directly as they undergo the phase transition to chaos. Specifically, we present evidence that both information transfer and storage in the recurrent layer are maximized close to this phase transition, providing an explanation for why guiding the recurrent layer toward the edge of chaos is computationally useful. As a consequence, our study suggests self-organized ways of improving performance in recurrent neural networks, driven by input data. Moreover, the networks we study share important features with biological systems such as feedback connections and online computation on input streams. A key example is the cerebral cortex, which was shown to also operate close to the edge of chaos. Consequently, the behavior of model systems as studied here is likely to shed light on reasons why biological systems are tuned into this specific regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.