Abstract

Phosphate limited grown Anabaena variabilis has the capability of processing information about external phosphate fluctuations by means of interconnected adaptive events. Adaptive events are physiological processes that are characterized by two opposite manifestations, namely adapted states and adaptive operation modes. In adapted states the energy-converting constituents of the uptake system operate under the prevailing external conditions in a coherent manner with least energy dissipation. Adaptive operation modes take place when adapted states are disturbed by persistent changes in phosphate supply. In this mode the outcome of former adaptations to elevated phosphate levels guides the emergence of a new adapted state. The influence of antecedent adapted states on subsequent adaptations was studied experimentally and characteristic examples for such information processing are given. The theory of self-referential systems allowed analyzing these examples. For this purpose adaptive events had to be considered as elements of a communicating network, in which, along a historic succession of alternating adapted states and adaptive operation modes, information pertaining to the self-preservation of the organism is transferred from one adaptive event to the next: the latter "interprets" environmental changes by means of distinct adaptive operation modes, aimed at preservation of the organism. The result of this interpretation is again leading to a coherent state that is passed on to subsequent adaptive events. A generalization of this idea to the adaptive interplay of other energy converting subsystems of the cell leads to the dynamic view of cellular information processing in which the organism re-creates itself in every new experience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.