Abstract
The inversion of the three energy equations, i.e. for the nuclear total energy, the sum of occupied single-particle state energies and the saturation condition, using the experimental data in 16O and 40Ca, is carried out to determine whether three-body effective interactions are necessary in addition to density independent and dependent two-body interactions. In order to fit the data both in a non-relativistic and a relativistic framework, the three-body interaction energy is found to be large and repulsive. We also show that density-dependent two-body effective interactions, which are another requisite in the non-relativistic potential theory, are not necessarily needed in the relativistic mean field framework but allow to increase the effective nucleon mass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.