Abstract

Magnetically induced current densities are different for different types of chemical bonds, and may help highlight some of their characteristics and stress their main differences. The present work considers magnetically induced current densities in the bonds of diatomic molecules bonded by covalent bonds as well as the gas phase molecules of 1:1 ionic compounds, comparing the current strength values and visualizing current density maps. The results show clear-cut differences for the different types of bonds (non-polar covalent, polar covalent, and ionic), and can also be related to the extent of the covalent or ionic character of a bond. For ionic compounds, the results also show relevant differences depending on the charges of the ions and on their electron configuration (including significant effects from the presence of d electrons in the outer shell of the ions). The article presents and analyses the results in detail. It is concluded that the magnetically induced current densities contribute to the description and interpretation of chemical bonding in diatomic molecules. © 2017 Wiley Periodicals, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call