Abstract
In this Letter, we report a novel integrated additive and subtractive manufacturing (IASM) method to fabricate an information integrated glass module. After a certain number of glass layers are 3D printed and sintered by direct ${{\rm CO}_2}$CO2 laser irradiation, a microchannel will be fabricated on top of the printed glass by integrated picosecond laser, for intrinsic Fabry-Perot interferometer (IFPI) optical fiber sensor embedment. Then, the glass 3D printing process continues for the realization of bonding between optical fiber and printed glass. Temperature sensing up to 1000°C was demonstrated using the fabricated information integrated module. In addition, the long-term stability of the glass module at 1000°C was conducted. Enhanced sensor structure robustness and harsh temperature sensing capability make this glass module attractive for harsh environment structural health monitoring.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.