Abstract

We introduce an information-hiding camera integrated with an electronic decoder that is jointly optimized through deep learning. This system uses a diffractive optical processor, which transforms and hides input images into ordinary-looking patterns that deceive/mislead observers. This information-hiding transformation is valid for infinitely many combinations of secret messages, transformed into ordinary-looking output images through passive light-matter interactions within the diffractive processor. By processing these output patterns, an electronic decoder network accurately reconstructs the original information hidden within the deceptive output. We demonstrated our approach by designing information-hiding diffractive cameras operating under various lighting conditions and noise levels, showing their robustness. We further extended this framework to multispectral operation, allowing the concealment and decoding of multiple images at different wavelengths, performed simultaneously. The feasibility of our framework was also validated experimentally using terahertz radiation. This optical encoder-electronic decoder-based codesign provides a high speed and energy efficient information-hiding camera, offering a powerful solution for visual information security.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.