Abstract

We study information geometry of the Dicke model, in the thermodynamic limit. The scalar curvature R of the Riemannian metric tensor induced on the parameter space of the model is calculated. We analyze this both with and without the rotating wave approximation, and show that the parameter manifold is smooth even at the phase transition, and that the scalar curvature is continuous across the phase boundary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.