Abstract

We present an information geometric analysis of both entropic speeds and entropy production rates arising from geodesic evolution on manifolds parametrized by pure quantum states. In particular, we employ pure states that emerge as outputs of suitably chosen [Formula: see text] time-dependent Hamiltonian operators that characterize analog quantum search algorithms of specific types. The [Formula: see text] Hamiltonian models under consideration are specified by external time-dependent magnetic fields within which spin-[Formula: see text] test particles are immersed. The positive definite Riemannian metrization of the parameter manifold is furnished by the Fisher information function. The Fisher information function is evaluated along parametrized squared probability amplitudes obtained from the temporal evolution of these spin-[Formula: see text] test particles. A minimum action approach is then utilized to induce the transfer of the quantum system from its initial state to its final state on the parameter manifold over a finite temporal interval. We demonstrate in an explicit manner that the minimal (that is, optimum) path corresponds to the shortest (that is, geodesic) path between the initial and final states. Furthermore, we show that the minimal path serves also to minimize the total entropy production occurring during the transfer of states. Finally, upon evaluating the entropic speed as well as the total entropy production along optimal transfer paths within several scenarios of physical interest in analog quantum searching algorithms, we demonstrate in a transparent quantitative manner a correspondence between a faster transfer and a higher rate of entropy production. We therefore conclude that higher entropic speed is associated with lower entropic efficiency within the context of quantum state transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.