Abstract

For the multisensor multichannel autoregressive moving average (ARMA) signals with time-delayed measurements, a measurement transformation approach is presented, which transforms the equivalent state space model with measurement delays into the state space model without measurement delays, and then using the Kalman filtering method, under the linear minimum variance optimal weighted fusion rules, three distributed optimal fusion Wiener filters weighted by matrices, diagonal matrices and scalars are presented, respectively, which can handle the fused filtering, prediction and smoothing problems. They are locally optimal and globally suboptimal. The accuracy of the fuser is higher than that of each local signal estimator. In order to compute the optimal weights, the formulae of computing the cross-covariances among local signal estimation errors are given. A Monte Carlo simulation example for the three-sensor target tracking system with time-delayed measurements shows their effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.