Abstract

Hyperspectral imagery comprises high-dimensional reflectance vectors representing the spectral response over a wide range of wavelengths per pixel in the image. The resulting high-dimensional feature spaces often result in statistically ill-conditioned class-conditional distributions. Conventional methods for alleviating this problem typically employ dimensionality reduction such as linear discriminant analysis along with single-classifier systems, yet these methods are suboptimal and lack noise robustness. In contrast, a divide-and-conquer approach is proposed to address the high dimensionality of hyperspectral data for effective and noise-robust classification. Central to the proposed framework is a redundant wavelet transform for representing the data in a feature space amenable to noise-robust multiscale analysis as well as a multiclassifier and decision-fusion system for classification and target recognition in high-dimensional spaces under small-sample-size conditions. The proposed partitioning of this feature space assigns a collection of all coefficients across all scales at a particular spectral wavelength to a dedicated classifier. It is demonstrated that such a partitioning of the feature space for a multiclassifier system yields superior noise performance for classification tasks. Additionally, validation studies with experimental hyperspectral data show that the proposed system significantly outperforms conventional denoising and classification approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.