Abstract
Information functionals allow one to quantify the degree of randomness of a given probability distribution, either absolutely (through min/max entropy principles) or relative to a prescribed reference one. Our primary aim is to analyze the “minimum information” assumption, which is a classic concept (R. Balian, 1968) in the random matrix theory. We put special emphasis on generic level (eigenvalue) spacing distributions and the degree of their randomness, or alternatively — information/organization deficit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.