Abstract

Our aim was to investigate whether including information from later lactations improves accuracy of genomic breeding values for 4 fertility-related disorders: cystic ovaries, retained placenta, metritis, and silent heat. Data consisted of health records from 6,015,245 lactations from 2,480,976 Norwegian Red cows, recorded from 1979 to 2012. These were daughters of 3,675 artificial insemination bulls. The mean frequency of these disorders for cows in lactation 1 to 5 ranged from 0.6 to 2.4% for cystic ovaries, 1.0 to 1.5% for metritis, 1.9 to 4.1% for retained placenta, and 2.4 to 3.8% for silent heat. Genomic information was available for all sires, and the 312 youngest bulls were used for validation. After standard editing of a 25K/54K single nucleotide polymorphism data set that was imputed both ways, a total of 48,249 single nucleotide polymorphism loci were available for genomic predictions. Genomic breeding values were predicted using univariate genomic BLUP for the first lactation only and for the first 5 lactations and multivariate genomic BLUP with 5 lactations for each disorder was also used for genomic predictions. Correlations between estimated breeding values for the 4 traits in 5 lactations with predicted genomic breeding values were compared. Accuracy ranged from 0.47 and 0.51 for cystic ovaries, 0.50 to 0.74 for retained placenta, 0.21 to 0.47 for metritis, and 0.22 to 0.60 for silent heat. Including later lactations in a multitrait genomic BLUP improved accuracy of genomic estimated breeding values for cystic ovaries, retained placenta, and silent heat, whereas for metritis no obvious advantage in accuracy was found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call