Abstract

We reconsider the persistence of information under the dynamics of the logistic map in order to discuss communication through a nonlinear channel where the sender can set the initial state of the system with finite resolution, and the recipient measures it with the same accuracy. We separate out the contributions of global phase-space shrinkage and local-phase space contraction and expansion to the uncertainty in predicting and postdicting the state of the system. We determine how the amplification parameter, the time lag, and the resolution influence the possibility for communication. A novel "clockwork" representation for real numbers is introduced that allows for a visualization of the flow of information between scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.