Abstract

In the simplest view of transcriptional regulation, the expression of a gene is turned on or off by changes in the concentration of a transcription factor (TF). We use recent data on noise levels in gene expression to show that it should be possible to transmit much more than just one regulatory bit. Realizing this optimal information capacity would require that the dynamic range of TF concentrations used by the cell, the input/output relation of the regulatory module, and the noise in gene expression satisfy certain matching relations, which we derive. These results provide parameter-free, quantitative predictions connecting independently measurable quantities. Although we have considered only the simplified problem of a single gene responding to a single TF, we find that these predictions are in surprisingly good agreement with recent experiments on the Bicoid/Hunchback system in the early Drosophila embryo and that this system achieves approximately 90% of its theoretical maximum information transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.