Abstract
In this paper, we present two methodologies to extract particular information based on the full text returned from the search engine to facilitate the users. The approaches are based three tasks: name entity recognition (NER), text classification and text summarization. The first step is the building training data and data cleansing. We consider tourism domain such as restaurant, hotels, shopping and tourism data set crawling from the websites. First, the tourism data are gathered and the vocabularies are built. Several minor steps include sentence extraction, relation and name entity extraction for tagging purpose. These steps are needed for creating proper training data. Then, the recognition model of a given entity type can be built. From the experiments, given review texts, we demonstrate to build the model to extract the desired entity,i.e, name, location, facility as well as relation type, classify the reviews or summarize the reviews. Two tools, SpaCy and BERT, are used to compare the performance of these tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ECTI Transactions on Computer and Information Technology (ECTI-CIT)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.