Abstract
India is an agricultural region and the economy of the country depends upon agriculture. Change in climatic parameters (like rainfall, soil, etc) directly affect the growth of crops. This parameter has an unswerving effect on the quantity of food production. Information extraction from the agricultural domain through rainfall prediction has been one of the most challenging issues around the world in recent years because of climatic changes. To evaluate the feasibility of rain by employing some data analytics and machine learning techniques are developed. This paper proposes an enhanced deep learning-based approach known as Deep Regression Network (DRN). The proposed DRN is a 6-layer deep neural network. The proposed algorithm trains and tests on the agricultural corpus, collected from Dehradun (India) region. The experimental outcomes state that the proposed DRN method attained a prediction accuracy approx 86.56%. The comparative analysis shows that the proposed method outperformed existing methods like Ensemble Neural Network, Naïve Bayes, KNN, and Weighted Self-Organizing Map.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.