Abstract
Graph-of-words is a flexible and efficient text representation which addresses well-known challenges, such as word ordering and variation of expressions, to natural language processing. In this paper, we consider the latest graph-based convolutional neural network technique, the Text GraphConvolutional Network (Text GCN), in the context of performingclassification tasks on free-form natural language texts. To do this, we designed a study of multi-task information extraction from medical text documents. We implemented multi-task learning in the Text GCN, performed hyperparameter optimization, and measured the clinical task performances. We evaluated micro and macro-F1 scores of four information extraction tasks,including subsite, laterality, behavior, and histological grades from cancer pathology reports. The scores for the Text GCN significantly outperformed our previous studies with convolutional neural networks, suggesting that the Text GCN model is superior to traditional models in task performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.