Abstract

The ground-air communication of civil aviation is interfered by radios, which has seriously endangered the normal flight of civil airplanes. This paper proposes an airplane information estimation algorithm based on the study of the problem of interference localization. Firstly, a novel signal model to accurately estimate parameters of the airplane is proposed. A method of Doppler estimation based on peak searching is proposed, and the 2D-MUSIC algorithm is applied to estimate the azimuth angle and elevation angle. Furthermore, the velocity and location of the airplane are estimated by employing array geometry. As a result, the airplane localization is achieved in bistatic radar, laying the foundations for interference localization. The correctness and effectiveness of the proposed method are verified with the computer simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.