Abstract

In this work we present a systematic mathematical approximation scheme that exposes the way that information, about the evolutionary forces of selection and random genetic drift, is encoded within gene-frequency trajectories. We determine approximate, time-dependent, gene-frequency trajectory statistics, assuming additive selection. We use the probability of fixation to test and illustrate the approximation scheme introduced. For the case where the strength of selection and the effective population size have constant values, we show how a standard diffusion approximation result, for the probability of fixation, systematically emerges when increasing numbers of approximate trajectory statistics are taken into account. We then provide examples of how time-dependent parameters influence gene-frequency statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.