Abstract

Small-world networks have been one of the most influential concepts in complex systems science, partly due to their prevalence in naturally occurring networks. It is often suggested that this prevalence is due to an inherent capability to store and transfer information efficiently. We perform an ensemble investigation of the computational capabilities of small-world networks as compared to ordered and random topologies. To generate dynamic behavior for this experiment, we imbue the nodes in these networks with random Boolean functions. We find that the ordered phase of the dynamics (low activity in dynamics) and topologies with low randomness are dominated by information storage, while the chaotic phase (high activity in dynamics) and topologies with high randomness are dominated by information transfer. Information storage and information transfer are somewhat balanced (crossed over) near the small-world regime, providing quantitative evidence that small-world networks do indeed have a propensity to combine comparably large information storage and transfer capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.