Abstract
Proximal and remote sensing techniques in the optical domain are cost-effective alternatives to standard soil property characterization methods. However, the extent of light penetration into the soil sample, also termed soil information depth, is not well understood. In this study a new analytical model that links the particle size distribution and soil reflectance in the near infrared (NIR) and shortwave infrared (SWIR) bands of the electromagnetic spectrum is introduced. The model enables the partitioning of measured reflectance spectra into surface and volume (subsurface) contributions, thereby yielding insights about the soil information depth. The model simulations indicate that the surface reflectance contribution to the total reflectance is significantly higher than the volume reflectance contribution for a broad range of soils that vastly differ in texture, mineralogical composition and organic matter contents. The ratio of volume to total reflectance is higher for sandy soils than for clayey soils, especially at longer optical wavelengths, but the ratio rarely exceeds 15%. Therefore, the light reflection from dry soils is predominantly a surface phenomenon and the information depth in most soils rarely exceeds 1 mm. The results of this study reveal an intimate physical relationship between soil reflectance and the particle size distribution in the NIR/SWIR range, which opens a potential new avenue for retrieval of the particle size distribution from remotely sensed reflectance via a universal process-based approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.